A Systematic Review of Packages for Time Series Analysis

Author:

Siebert JulienORCID,Groß JanekORCID,Schroth ChristofORCID

Abstract

This paper presents a systematic review of Python packages with a focus on time series analysis. The objective is to provide (1) an overview of the different time series analysis tasks and preprocessing methods implemented, and (2) an overview of the development characteristics of the packages (e.g., documentation, dependencies, and community size). This review is based on a search of literature databases as well as GitHub repositories. Following the filtering process, 40 packages were analyzed. We classified the packages according to the analysis tasks implemented, the methods related to data preparation, and the means for evaluating the results produced (methods and access to evaluation data). We also reviewed documentation aspects, the licenses, the size of the packages’ community, and the dependencies used. Among other things, our results show that forecasting is by far the most frequently implemented task, that half of the packages provide access to real datasets or allow generating synthetic data, and that many packages depend on a few libraries (the most used ones being numpy, scipy and pandas). We hope that this review can help practitioners and researchers navigate the space of Python packages dedicated to time series analysis. We also provide an updated list of the reviewed packages online.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creation of Time Series Models based on Deep Learning for Generation of Probabilistic Forecasts Using GluonTS and Python;2023 11th International Conference in Software Engineering Research and Innovation (CONISOFT);2023-11-06

2. DeepCAN: Hybrid Method for Road Type Classification Using Vehicle Sensor Data for Smart Autonomous Mobility;IEEE Transactions on Intelligent Transportation Systems;2023-11

3. Assessing the applicability of changepoint analysis to analyse short-term growth;Human Biology and Public Health;2023-07-21

4. Selecting third-party libraries: the data scientist’s perspective;Empirical Software Engineering;2022-12-07

5. A Comparison of Automated Time Series Forecasting Tools for Smart Cities;Progress in Artificial Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3