Early Detection of Alzheimer’s Disease: An Extensive Review of Advancements in Machine Learning Mechanisms Using an Ensemble and Deep Learning Technique

Author:

Neelakandan Renjith Prabhavathi1ORCID,Kandasamy Ramesh2ORCID,Subbiyan Balasubramani3,Bennet Mariya Anto4

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 603103, Tamilnadu, India

2. Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore 641008, Tamilnadu, India

3. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Andrapradesh, India

4. Department of Electronics and Communication Engineering, Vel Tech Rangaranjan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600062, Tamilnadu, India

Publisher

MDPI

Reference26 articles.

1. Machine learning methods for predicting progression from mild cognitive impairment to AD dementia: A systematic review;Grueso;Alzheimer’s Res. Ther.,2021

2. Two-stage deep learning model for AD detection and prediction of the mild cognitive impairment time;Saleh;Neural Comp. Appl.,2022

3. AD Neuroimaging Initiative. Predicting the course of Alzheimer’s progression;Iddi;Brain Inform.,2019

4. Prediction of differentially expressed microRNAs in blood as potential biomarkers for AD by meta-analysis and adaptive boosting ensemble learning;Yuen;Alzheimer’s Res. Ther.,2021

5. Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset;Naz;Multi. Syst.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing ML model for early detection and prediction of Alzheimer's disease using multi modal biomarkers;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

2. MR-TBA – An improved Trust-based Security mechanism for IoT Networks;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3