A Simple Semi-Analytic Contact Mechanical Model for Tangential and Torsional Fretting Wear of Axisymmetric Contacts

Author:

Willert Emanuel

Abstract

Fretting wear of axisymmetric contacts is considered within the framework of the Hertz–Mindlin approximation and the Archard law for the linear wear. If the characteristic time scale for the wear is much larger than the duration of a single fretting oscillation, the profile change due to wear during one fretting cycle can be neglected for the contact problem as a zero-order approximation. This allows to give an exact contact solution during each fretting cycle, depending on the current worn profile, and thus for the explicit statement of an ordinary integro-differential equation system for the time-evolution of the fretting profile, which can be easily solved numerically. The proposed method gives the same results as a known, contact mechanically more rigorous simulation procedure that also operates within the framework of the Hertz–Mindlin approximation, but works significantly faster than the latter one. Tangential and torsional fretting wear are considered in detail. A comparison of the numerical prediction for the evolution of the worn profile in partial slip torsional fretting of a rubber ball on abrasive paper shows good agreement with experimental results from the literature.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3