Fish Classification Using DNA Barcode Sequences through Deep Learning Method

Author:

Jin Lina,Yu Jiong,Yuan Xiaoqian,Du Xusheng

Abstract

Fish is one of the most extensive distributed organisms in the world. Fish taxonomy is an important component of biodiversity and the basis of fishery resources management. The DNA barcode based on a short sequence fragment is a valuable molecular tool for fish classification. However, the high dimensionality of DNA barcode sequences and the limitation of the number of fish species make it difficult to reasonably analyze the DNA sequences and correctly classify fish from different families. In this paper, we propose a novel deep learning method that fuses Elastic Net-Stacked Autoencoder (EN-SAE) with Kernel Density Estimation (KDE), named ESK model. In stage one, the ESK preprocesses original data from DNA barcode sequences. In stage two, EN-SAE is used to learn the deep features and obtain the outgroup score of each fish. In stage three, KDE is used to select a threshold based on the outgroup scores and classify fish from different families. The effectiveness and superiority of ESK have been validated by experiments on three datasets, with the accuracy, recall, F1-Score reaching 97.57%, 97.43%, and 98.96% on average. Those findings confirm that ESK can accurately classify fish from different families based on DNA barcode sequences.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3