Majority Decision Aggregation with Binarized Data in Wireless Sensor Networks

Author:

Liu FanpynORCID

Abstract

Wireless sensor networks (WSNs) are the cornerstone of the current Internet of Things era. They have limited resources and features, a smaller packet size than other types of networks, and dynamic multi-hop transmission. WSNs can monitor a particular area of interest and are used in many different applications. For example, during the COVID-19 pandemic, WSNs have been used to measure social distancing/contact tracing among people. However, the major challenge faced by WSN protocols is limited battery energy. Therefore, the whole WSN area is divided into odd clusters using k-means++ clustering to make a majority rule decision to reduce the amount of additional data sent to the base station (or sink) and achieve node energy-saving efficiency. This study proposes an energy-efficient binarized data aggregation (EEBDA) scheme, by which, through a threshold value, the collected sensing data are asserted with binary values. Subsequently, the corresponding cluster head (CH), according to the Hamming weight and the final majority decision, is calculated and sent to the base station (BS). The EEBDA is based on each cluster and divides the entire WSN area into four quadrants. All CHs construct a data-relay transmission link in the same quadrant; the binary value is transferred from the CHs to the sink. The EEBDA adopts a CH rotation scheme to aggregate the data based on the majority results in the cluster. The simulation results demonstrate that the EEBDA can reduce redundant data transmissions, average the energy consumption of nodes in the cluster, and obtain a better network lifetime when compared to the LEACH, LEACH-C, and DEEC algorithms.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3