Abstract
An n×n matrix A is called eventually exponentially positive (EEP) if etA=∑k=0∞tkAkk!>0 for all t≥t0, where t0≥0. A matrix whose entries belong to the set {+,−,0} is called a sign pattern. An n×n sign pattern A is called potentially eventually exponentially positive (PEEP) if there exists some real matrix realization A of A that is EEP. Characterizing the PEEP sign patterns is a longstanding open problem. In this article, A is called minimally potentially eventually exponentially positive (MPEEP), if A is PEEP and no proper subpattern of A is PEEP. Some preliminary results about MPEEP sign patterns and PEEP sign patterns are established. All MPEEP sign patterns of orders n≤3 are identified. For the n×n tridiagonal sign patterns Tn, we show that there exists exactly one MPEEP tridiagonal sign pattern Tno. Consequently, we classify all PEEP tridiagonal sign patterns as the superpatterns of Tno. We also classify all PEEP star sign patterns Sn and double star sign patterns DS(n,m) by identifying all the MPEEP star sign patterns and the MPEEP double star sign patterns, respectively.
Funder
Huaiyin Institute of Technology
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference10 articles.
1. Matrix Analysis;Horn,1995
2. Reachability and Holdability of Nonnegative States
3. Combinatorial Matrix Theory;Brualdi,1991
4. Sign pattern matrices;Hall,2007
5. Matrices of Sign Solvable Linear Systems;Brualdi,1995