Investigation of Pharmaceutical Importance of 2H-Pyran-2-One Analogues via Computational Approaches

Author:

Shetgaonkar Samata E.,Kollur Shiva PrasadORCID,Pillai Renjith Raveendran,Thangavel Karthick,Armaković Sanja J.,Armaković StevanORCID,Shivamallu ChandanORCID,Amachawadi Raghavendra G.ORCID,Syed Asad,Elgorban Abdallah M.ORCID,Bahkali Ali H.,Singh Fateh V

Abstract

Highly functionalized spirocyclic ketals were synthesized through asymmetric oxidative spirocyclization via carbanion-induced ring transformation of 2H-pyran-2-ones with 1,4-cyclohexandione monoethyleneketal under alkaline conditions. Further acidic-hydrolysis of obtained spirocyclic ketals yields highly substituted 2-tetralone in good yield. Computational analysis based on the DFT calculations and MD simulations has been performed in order to predict and understand global and local reactivity properties of newly synthesized derivatives. DFT calculations covered fundamental reactivity descriptors such as molecular electrostatic potential and average local ionization energies. Nitrogen atom and benzene rings have been recognized as the most important molecular sites from these aspects. Additionally, to predict whether studied compounds are stable towards the autoxidation mechanism, we have also studied the bond dissociation energies for hydrogen abstraction and identified the derivative which might form potentially genotoxic impurities. Interactions with water, including both global and local aspects, have been covered thanks to the MD simulations and calculations of interaction energies with water, counting of formed hydrogen interactions, and radial distribution functions. MD simulations were also used to identify which excipient could be used together with these compounds, and it has been established that the polyvinylpyrrolidone polymer could be highly compatible with these compounds, from the aspect of calculated solubility parameters.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3