Abstract
Energy-momentum localization for the four-dimensional static and spherically symmetric, regular Simpson–Visser black hole solution is studied by use of the Einstein and Møller energy-momentum complexes. According to the particular values of the parameter of the metric, the static Simpson–Visser solution can possibly describe the Schwarzschild black hole solution, a regular black hole solution with a one-way spacelike throat, a one-way wormhole solution with an extremal null throat, or a traversable wormhole solution of the Morris–Thorne type. In both prescriptions it is found that all the momenta vanish, and the energy distribution depends on the mass m, the radial coordinate r, and the parameter a of the Simpson–Visser metric. Several limiting cases of the results obtained are discussed, while the possibility of astrophysically relevant applications to gravitational lensing issues is pointed out.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference59 articles.
1. On the general theory of relativity;Einstein,1915
2. Conservation laws in general relativity;Trautman,1962
3. The Classical Theory of Fields;Landau,1987
4. Equations of Motion in General Relativity
5. Spin and Angular Momentum in General Relativity
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献