Abstract
The observation and the quantification of asymmetry in biological structures are deeply investigated in geometric morphometrics. Patterns of asymmetry were explored in both living and fossil species. In living organisms, levels of directional and fluctuating asymmetry are informative about developmental processes and health status of the individuals. Paleontologists are primarily interested in asymmetric features introduced by the taphonomic process, as they may significantly alter the original shape of the biological remains, hampering the interpretation of morphological features which may have profound evolutionary significance. Here, we provide a new R tool that produces the numerical quantification of fluctuating and directional asymmetry and charts asymmetry directly on the specimens under study, allowing the visual inspection of the asymmetry pattern. We tested this show.asymmetry algorithm, written in the R language, on fossil and living cranial remains of the genus Homo. show.asymmetry proved successful in discriminating levels of asymmetry among sexes in Homo sapiens, to tell apart fossil from living Homo skulls, to map effectively taphonomic distortion directly on the fossil skulls, and to provide evidence that digital restoration obliterates natural asymmetry to unnaturally low levels.
Funder
H2020 Marie Skłodowska-Curie Actions
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献