Abstract
Orthognathic surgical planning compromises three clinical needs: occlusal balancing, symmetry, and harmony, which may result in multiple outcomes. Facial symmetry is the ultimate goal for patients and practitioners. Pure virtual planning and mixed reality planning were two innovative technologies in clinical practices compared to conventional model surgery used for decades. We proposed quantitative asymmetry assessment methods in both mandibular contour (in 2D) and a midface and mandible relationship in 3D. A computerized optimal symmetry plane, being the median plane, was applied in both planning methods. In the 3D asymmetry assessment between two planning methods, the deviation angle and deviation distance between midface and mandible were within 2° and 1.5 mm, respectively. There was no significant difference, except the symmetry index of the anterior deviation angle between the virtual and mixed reality planning in the 3D asymmetry assessment. In the mandible contour assessment, there was no significant difference between the virtual and mixed reality planning in asymmetry assessment in the frontal and frontal downward inclined views. Quantitative outcomes in 3D asymmetry indices showed that mixed reality planning was slightly more symmetric than virtual planning, with the opposite in 2D contouring.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献