Symmetries and Geometries of Qubits, and Their Uses

Author:

Rau A. R. P.ORCID

Abstract

The symmetry SU(2) and its geometric Bloch Sphere rendering have been successfully applied to the study of a single qubit (spin-1/2); however, the extension of such symmetries and geometries to multiple qubits—even just two—has been investigated far less, despite the centrality of such systems for quantum information processes. In the last two decades, two different approaches, with independent starting points and motivations, have been combined for this purpose. One approach has been to develop the unitary time evolution of two or more qubits in order to study quantum correlations; by exploiting the relevant Lie algebras and, especially, sub-algebras of the Hamiltonians involved, researchers have arrived at connections to finite projective geometries and combinatorial designs. Independently, geometers, by studying projective ring lines and associated finite geometries, have come to parallel conclusions. This review brings together the Lie-algebraic/group-representation perspective of quantum physics and the geometric–algebraic one, as well as their connections to complex quaternions. Altogether, this may be seen as further development of Felix Klein’s Erlangen Program for symmetries and geometries. In particular, the fifteen generators of the continuous SU(4) Lie group for two qubits can be placed in one-to-one correspondence with finite projective geometries, combinatorial Steiner designs, and finite quaternionic groups. The very different perspectives that we consider may provide further insight into quantum information problems. Extensions are considered for multiple qubits, as well as higher-spin or higher-dimensional qudits.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference130 articles.

1. Quantum Computation and Quantum Information;Nielsen,2000

2. Symmetries in Quantum Physics;Fano,1996

3. Modern Quantum Mechanics;Sakurai,1994

4. Principles of Nuclear Magnetic Resonance in One and Two Dimensions;Ernst,1987

5. Quantum Discord: A Measure of the Quantumness of Correlations

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3