Abstract
Despite the excellent prognosis for children and adolescents with acute lymphoblastic lymphoma (ALL), the involvement of the central nervous system (CNS) represents a major therapeutic challenge. Patients who develop CNS relapse have a very poor prognosis, and since current methods cannot reliably identify patients with CNS involvement or patients at high risk of CNS relapse, all children with ALL receive CNS-directed treatment. The current golden standard for detecting CNS involvement is the assessment of cytomorphology on cytospin slides of cerebrospinal fluid (CSF). This technique is inadequate due to low sensitivity and reproducibility. Flow cytometric analysis of CSF represent a novel, highly specific and sensitive technique for the detection of leukemic cells in the CNS. In prospective studies, CSF flow cytometry demonstrated two to three times higher rates of CNS involvement at diagnosis of childhood ALL than conventional cytospin, and especially demonstrated superior sensitivity in detecting low-level CNS disease. CNS involvement determined via flow cytometry has been linked to a higher risk of CNS relapse and poor outcomes in several studies. In this review, we discuss the central analytical concepts of CSF flow cytometry and summarize the current evidence supporting the use of flow cytometric detection of malignant blasts as a biomarker of CNS involvement in childhood ALL.
Subject
Molecular Biology,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献