Seedling Survival Strategies of Zanthoxylum planispinum ‘Dintanensis’ and Zanthoxylum amatum ‘Novemfolius’, Based on Functional Traits in Karst Desertification Control

Author:

Yu Yanghua1ORCID,Song Yanping1,Li Yitong1

Affiliation:

1. School of Karst Science, State Engineering Technology Institute for Karst Decertification Control, Guizhou Normal University, Guiyang 550001, China

Abstract

The exploration of the functional traits of Zanthoxylum planispinum ‘dintanensis’ and Zanthoxylum amatum ‘novemfolius’ at the seedling stage may provide a scientific basis for the zoning of germplasm resources and the introduction of plant varieties. The seedlings of the above mentioned two species with an age of about 8 months were selected as the study material, and the structure, nutrients, and physiological traits of leaves and roots were determined, respectively, to reveal their survival strategies. The results demonstrated the following four key elements. (1) The leaf thickness, specific leaf area, and leaf δ15N value of Z. planispinum ‘dintanensis’ were significantly higher than those of Z. amatum ‘novemfolius’ (p < 0.05). However, the root diameter and Ca content showed the opposite results, and the other traits were not significantly different. (2) Leaf functional traits except Ca, as well as specific root length, and root P, Ca, and physiological traits had strong dominant effects on the functional trait system. (3) Among the main functional traits, leaf K and root P preferred environmental selection, leaf C, N, and P favored stable inheritance, and specific leaf area, leaf δ15N, and root Ca were affected by varieties. (4) There were significant synergies (promotion) and trade-offs (inhibition) between the functional traits, and the leaves and the root system were closely correlated. It is speculated that Z. planispinum ‘dintanensis’ may have a stronger defense system. Its leaves are mainly related to growth and defense functions, and its roots are mainly related to the regulation of functions.

Funder

Guizhou Province Science and Technology Support Plan Project

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3