Spatiotemporal Variations in Fingerprinting Sediment Sources in a Watershed Disturbed by Construction

Author:

Zhu Baicheng1,Cao Longxi12,Yang Sen3,Pan Heping1,Liu Fei3,Kong Yaping4

Affiliation:

1. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China

2. Tianfu Yongxing Laboratory, Chengdu 610213, China

3. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China

4. China Academy of Transportation Sciences, Beijing 100029, China

Abstract

Engineering construction disturbs the Earth’s surface and exacerbates soil erosion, resulting in sediment contributions at the watershed scale, the spatiotemporal variation of which remains to be clarified. Based on a typically disturbed catchment, soil samples were collected from sources such as forests, grasslands, spoil heaps, and exposed slopes. Sediment deposition was sampled in 2022 and 2023 along the main channel and fingerprinting technology was employed to calculate the relative contributions of different sources. The results indicated that the optimal composite fingerprints comprising Na₂O, Li, Sr, and Ce could effectively resolve the contributions of different sources. Natural sources were the main sediment contributors, but the average contribution decreased from 72.96% to 58.73% over two periods. In contrast, the contribution of spoil heaps and exposed slopes increased from 27.04% to 41.27% and the area percentage increased from 0.18% to 0.30%. The spoil heap represents the relatively large area of disturbance and its contact length with the river determines the sediment contribution rates, which varied spatially in a quadratic trend along the channel. Meanwhile, the sediment contribution of relatively small and dispersed exposed slopes could be quantified using a linear equation of the disturbance weighting indicator (DWI) composed of disturbed area and flow distance. These results would be helpful in assessing the environmental impact of engineering disturbances and optimizing mitigation measures.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Sichuan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3