Monitoring of Open-Pit Mining Areas Using Landsat Series Imagery (1984–2023) and Cloud Processing

Author:

Montero Pau1,Bustos Edgardo2ORCID,Padró Joan-Cristian34ORCID,Carabassa Vicenç12ORCID

Affiliation:

1. Centre for Ecological Research and Forestry Applications (CREAF), E08193 Bellaterra (Cerdanyola del Vallès), Spain

2. Facultat de Ciències, Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Spain

3. Institut Cartogràfic i Geològic de Catalunya (ICGC), Parc de Montjuïc, E08038 Barcelona, Spain

4. Grumets Research Group, Departament de Geografia, Edifici B, Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Spain

Abstract

While open-pit mining activities represent one of the human-derived most impactful land cover changes, these changes and the linked restoration processes can be challenging to assess. This article presents a reproducible methodology carried out with cloud processing of satellite images (Google Earth Engine (GEE)) to evaluate the evolution of open-pit mining activities and their restoration in a Mediterranean landscape. For this purpose, the calculation of the normalized differential vegetation index (NDVI) was used to obtain a quantitative parameter to monitor vegetation presence in each extractive area. To validate these results, confusion matrices were performed between the classification obtained in the study and the official land cover mapping, using randomly selected mining areas as test points, with an average accuracy of 88%. According to the methodology used, the surface of areas denuded by mining in the period 1984–2023 has fluctuated over time, with a maximum in 2005 coinciding with the peak of the Spanish construction boom, and a subsequent decrease towards the present. From these results, it can be concluded that Landsat-type data processed using GEE provide a quick and useful tool for monitoring the evolution of mining activity, including restoration trends, becoming particularly valuable for public bodies’ inspections or decision making.

Publisher

MDPI AG

Reference41 articles.

1. (2023, October 08). History|Landsat Science, Available online: https://landsat.gsfc.nasa.gov/satellites/history/.

2. Landsat Satellite Missions|U.S (2023, October 08). Geological Survey, Available online: https://www.usgs.gov/landsat-missions/landsat-satellite-missions.

3. Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L., and Zhu, Z. (2018). Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens., 11.

4. (2023, October 08). Remote Sensing Technology—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing-technology.

5. Liu, C.C., Chen, Y.H., Wu, M.H.M., Wei, C., and Ko, M.H. (2019). Assessment of forest restoration with multitemporal remote sensing imagery. Sci. Rep., 9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3