Urban Fire Risk Dynamics and Mitigation Strategies in Shanghai: Integrating Spatial Analysis and Game Theory

Author:

Yao Manqing1,Zhang Deshun1,Chen Yingying1,Liu Yujia1,Elsadek Mohamed1ORCID

Affiliation:

1. College of Architecture and Urban Planning, Tongji University, No.1239 Siping Road, Shanghai 200092, China

Abstract

In recent decades, the increasing frequency of urban fires, driven by urban functional enhancements and climate change, has posed a growing threat to metropolitan sustainability. This study investigates the temporal and spatial characteristics of fire incidents in Shanghai from 2019 to 2023. Using satellite fire point data and official government records, kernel density analysis and wavelet analysis were employed to analyze the time series and spatial distribution of fire data. Subsequently, eleven primary factors influencing urban fire occurrence were identified, encompassing probability, regional characteristics, and hazard sources. A combined methodology of subjective and objective weights with game theory was used to generate a fire risk assessment at a 1 × 1 km2 grid scale. Furthermore, the spatial distribution characteristics of the assessments were analyzed. The results reveal that the downtown area exhibits the highest intensity of urban fires in terms of spatial domain, with a decreasing intensity towards the suburbs. Temporally, fire frequency demonstrates significant periodicity at an 18a time scale, while clear seasonal fluctuations and periodicity are observed at a 16-22a time scale, with higher occurrences in spring and winter. The study identifies typical aggregation patterns of urban fires, with high-risk centers in downtown Shanghai. Considering the impact of climate change and human activities, high-risk areas may gradually expand to adjacent urban suburbs, presenting a concerning future scenario. By examining the dual attributes of “combustibles and fireproof space” within urban greening systems, this research offers recommendations for the future strategies of disaster prevention and mitigation of green systems in Shanghai.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3