Characteristics of Changes in Typical Mountain Wetlands in the Middle and High Latitudes of China over the Past 30 Years

Author:

Luo Nana1,Yu Rui1,Wen Bolong1

Affiliation:

1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

Abstract

Analysis of the driving mechanisms of wetland change can help identify spatial differences in the mechanisms affecting various elements, enabling a more scientific approach to the conservation and utilization of wetlands. This study investigated the impacts of natural and anthropogenic factors on the spatiotemporal evolution of the Altay and Greater and Lesser Khingan Mountains areas using Landsat satellite image data from 1980 to 2018 and fieldwork data from 2019 to 2020. A transfer matrix, correlation analysis, and dynamic characteristics were applied to calculate and analyze the transformation types and areas of wetland resources across all consecutive periods. Finally, the dominant factors influencing the spatiotemporal evolution of the wetland were explored and revealed using the drought index (Standardized Precipitation Index, SPEI) and statistical almanacs. The results showed: (1) From 1980 to 2018, the wetlands area in the Altay Mountains exhibited a decreasing trend, whereas the wetlands area in the Greater and Lesser Khingan Mountains showed an increasing trend. The primary type of wetland transfer in the Altay Mountains was grassland, whereas in the Greater and Lesser Khingan Mountains regions, the primary types of wetland transfer were grassland and forestland. The wetlands area transferred out of the Altay Mountain region was larger than the area of wetland types transferred into during 2010–2018, whereas the wetland areas of the Greater and Lesser Khingan Mountain areas showed the opposite trend. (2) From 1980 to 2018, the wetland ecosystem types in the Altay Mountains exhibited the highest dynamic and conversion degrees of the channels. Similarly, the mountain areas of the Greater Khingan Mountains showed the highest dynamic and conversion degrees of marshes and channels among the wetland types. In addition, the mountainous areas of the Lesser Khingan Mountains showed the highest dynamic and conversion degrees for reservoirs and rivers. (3) Natural driving factor analysis revealed that the SPEI values in the Altay Mountains and the Greater and Lesser Khingan Mountains areas exhibited an increasing trend, indicating that the climate has been warm and humid over the past 30 years and that the expansion of cropland and human-made wetland areas has been significantly influenced by human activities. Therefore, the wetland areas of the Greater and Lesser Khingan Mountains in the northeast are strongly influenced by human activities, whereas the wetland in the Altay Mountains in the northwest is strongly influenced by the climate.

Funder

National Basic Research Program of China

R & D Innovative Teams of Major Scientific and Technological Projects of Jilin Province

Science and Technology Development Program of Jilin Province

National Natural Science Foundation of China

Survey of Basic Scientific and Technological Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3