Exploring the Potential and Obstacles of Agro-Industrial Waste-Based Fertilizers

Author:

Maffia Angela1ORCID,Marra Federica1ORCID,Celano Giuseppe2ORCID,Oliva Mariateresa1ORCID,Mallamaci Carmelo1,Hussain Muhammad Iftikhar3ORCID,Muscolo Adele1ORCID

Affiliation:

1. Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy

2. Department of FARMACIA, Course of Agriculture, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy

3. Department of Plant Biology & Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain

Abstract

Conducted in Southern Italy’s Calabria region, this study aimed to repurpose olive wastes, which are still a source of valuable biomolecules including plant nutrients, flavonoids, polysaccharides, and phenolic compounds, into compost to be used in sustainable agriculture as fertilizers, in alternative to synthetic substances. The compost underwent chemical analysis and soil fertility testing to support eco-friendly agricultural practices. Factors like extraction process, waste composition, and percentage of waste in composting were studied for their impact. The research evaluated compost fertilizing effectiveness by analyzing soil chemical and biological properties 180 days after the application. The results demonstrated that the proportion of olive oil waste and the olive oil extraction method significantly impacted compost quality and its environmental footprint. All composts improved soil properties but to a different extent. Compost olive waste 3 (OWC3; 34% olive oil waste, 33% buffalo manure, and 33% straw) was the most effective in enhancing soil fertility. Compost olive waste 1 (OWC1), with the same olive waste percentage as compost olive waste 2 (OWC2) but from a different extraction process, outperformed OWC2 in enhancing soil fertility and microbial activity. The research highlighted the importance of organic matter addition to soil and the significant role of both raw material percentage and extraction process in compost quality. Life cycle assessment indicated that OWC3 had the lowest environmental impact and the highest fertilizing power. Composting represents a practical way to manage organic wastes and improve soil quality, providing essential nutrients for soil health and ecosystem functioning.

Funder

the Italian Ministry for University and Research (MUR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3