Harnessing Machine Learning Algorithms to Model the Association between Land Use/Land Cover Change and Heatwave Dynamics for Enhanced Environmental Management

Author:

Ashwini Kumar1ORCID,Sil Briti Sundar2,Kafy Abdulla Al3ORCID,Altuwaijri Hamad Ahmed4ORCID,Nath Hrithik56ORCID,Rahaman Zullyadini A.7

Affiliation:

1. Department of Civil Engineering Chaibasa Engineering College, Jhinkpani 833215, Jharkhand, India

2. Department of Civil Engineering, National Institute of Technology, Silchar 788010, Assam, India

3. Department of Geography & the Environment, The University of Texas at Austin, 305 E 23rd St, Austin, TX 78712, USA

4. Department of Geography, College of Humanities and Social Sciences, King Saud University, Riyadh 11451, Saudi Arabia

5. Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh

6. Department of Civil Engineering, University of Creative Technology Chittagong (UCTC), Chattogram 4212, Bangladesh

7. Department of Geography & Environment, Faculty of Human Sciences, Sultan Idris Education University, Tanjung Malim 35900, Malaysia

Abstract

As we navigate the fast-paced era of urban expansion, the integration of machine learning (ML) and remote sensing (RS) has become a cornerstone in environmental management. This research, focusing on Silchar City, a non-attainment city under the National Clean Air Program (NCAP), leverages these advanced technologies to understand the urban microclimate and its implications on the health, resilience, and sustainability of the built environment. The rise in land surface temperature (LST) and changes in land use and land cover (LULC) have been identified as key contributors to thermal dynamics, particularly focusing on the development of urban heat islands (UHIs). The Urban Thermal Field Variance Index (UTFVI) can assess the influence of UHIs, which is considered a parameter for ecological quality assessment. This research examines the interlinkages among urban expansion, LST, and thermal dynamics in Silchar City due to a substantial rise in air temperature, poor air quality, and particulate matter PM2.5. Using Landsat satellite imagery, LULC maps were derived for 2000, 2010, and 2020 by applying a supervised classification approach. LST was calculated by converting thermal band spectral radiance into brightness temperature. We utilized Cellular Automata (CA) and Artificial Neural Networks (ANNs) to project potential scenarios up to the year 2040. Over the two-decade period from 2000 to 2020, we observed a 21% expansion in built-up areas, primarily at the expense of vegetation and agricultural lands. This land transformation contributed to increased LST, with over 10% of the area exceeding 25 °C in 2020 compared with just 1% in 2000. The CA model predicts built-up areas will grow by an additional 26% by 2040, causing LST to rise by 4 °C. The UTFVI analysis reveals declining thermal comfort, with the worst affected zone projected to expand by 7 km2. The increase in PM2.5 and aerosol optical depth over the past two decades further indicates deteriorating air quality. This study underscores the potential of ML and RS in environmental management, providing valuable insights into urban expansion, thermal dynamics, and air quality that can guide policy formulation for sustainable urban planning.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3