Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water

Author:

Cimafonte Martina,Fulgione AndreaORCID,Gaglione Rosa,Papaianni MarinaORCID,Capparelli Rosanna,Arciello Angela,Bolletti Censi Sergio,Borriello GiorgiaORCID,Velotta RaffaeleORCID,Della Ventura Bartolomeo

Abstract

The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63−/Fe(CN)64− as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL−1 while preserving the rapidity of the method that requires only 1 h to provide a “yes/no” response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the “effective” electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference69 articles.

1. Escherichia coli as an indicator of bacteriological quality of water: an overview

2. Water Microbiology. Bacterial Pathogens and Water

3. Drinking-Waterhttps://www.who.int/news-room/fact-sheets/detail/drinking-water

4. E. coli as an Indicator of Contamination and Health Risk in Environmental Waters;Price,2017

5. An overview of foodborne pathogen detection: In the perspective of biosensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3