Abstract
Service life estimate is crucial for evaluating the economic and environmental sustainability of projects, by means—adopting a life cycle perspective—of the Life Cycle Cost Analysis (LCCA). Service life, in turn, is strictly correlated to maintenance investment and planning activities, in view of building/building component/system/infrastructure products’ durability requirements, and in line with the environmental-energy policies, transposed into EU guidelines and regulations. Focusing on the use-maintenance-adaptation stage in the constructions’ life cycle, the aim of this work is to propose a methodology for supporting the “optimal maintenance planning” in function of life cycle costs, assuming the presence of financial constraints. A first research step is proposed for testing the economic sustainability of different project options, at the component scale, which imply different cost items and different maintenance-replacement interventions over time. The methodology is based on the Annuity Method, or Equivalent Annual Cost approach, as defined by the norm EN 15459-1:2017. The method, poorly explored in the literature, is proposed here as an alternative to the Global Cost approach (illustrated in the norm as well). Due to the presence of uncertainty correlated to deterioration processes and market variability, the stochastic Annuity Method is modeled by introducing flexibility in input data. Thus, with the support of Probability Analysis and the Monte Carlo Method (MCM), the stochastic LCCA, solved through the stochastic Equivalent Annual Cost, is used for the economic assessment of different maintenance scenarios. Two different components of an office building project (a timber and an aluminum frame), are assumed as a case for the simulation. The methodology intends to support decisions not only in the design phases, but also in the post-construction ones. Furthermore, it opens to potential applications in reinforced concrete infrastructures’ stock, which is approaching, as a considerable portion of the building stock, its end-of-life stage.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference35 articles.
1. Optimized maintenance and renovation scheduling in multifamily buildings – a systematic approach based on condition state and life cycle cost of building components
2. Predictive and Optimised Life Cycle Management. Buildings and Infrastructure;Sarja,2006
3. ISO 15686:2008—Buildings and Constructed Assets—Service-Life Planning—Part 5: Life Cycle Costing. ISO/TC 59/CS 14,2008
4. Standard EN ISO 15459-1:2017. Energy Performance of Buildings—Economic Evaluation Procedure for Energy Systems in Buildings,2017
5. Economic-Environmental Indicators to Support Investment Decisions: A Focus on the Buildings’ End-of-Life Stage
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献