Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles

Author:

Chai Chao,Cheng Yong-Chun,Zhang Yuwei,Chen Yu,Zhu Bing

Abstract

This paper focuses on the freeze-thaw cycles (F-T cycles) resistance of porous asphalt mixture (PAM) with different air voids in order to explore the gradation of the PAM suitable for seasonal freezing regions. Three sets of PAMs with 18%, 21%, and 25% air voids were designed. After 0–20 F-T cycles, the effects of F-T cycles on the performance degradation of three groups of PAMs were studied by performing a low-temperature splitting test with acoustic emission technology, a normal temperature splitting test, a compression test, a Cantabro particle loss test, and a dynamic creep test. The results show that the damage process of PAM caused by multiple F-T cycles could be more clearly defined by acoustic emission parameters. In addition, the larger the air void, the smaller its indirect tensile strength and compression strength, and the worse its particle loss resistance and high-temperature stability, which made the adverse effect of F-T cycles more significant. Therefore, the air void of PAM used in seasonal freezing regions is suggested to be less than 21%.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3