A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps

Author:

Hwang Jun Kwon,Duhirwe Patrick Nzivugira,Yun Geun YoungORCID,Lee Sukho,Seo Hyeongjoon,Kim Inhan,Santamouris Mat

Abstract

Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the current data-driven approaches for estimating RCA suffer from poor generalization and overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing data-driven approaches. The data for designing models were collected from two EHP systems with different specifications, which were used for the training and testing of models. In addition to the data obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model training and model testing, the hybrid DNN model has a 6% prediction performance difference, indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves data-driven approaches and can be used for designing efficient and energy-saving EHP systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3