SHAP-Driven Explainable Artificial Intelligence Framework for Wildfire Susceptibility Mapping Using MODIS Active Fire Pixels: An In-Depth Interpretation of Contributing Factors in Izmir, Türkiye

Author:

Iban Muzaffer Can1ORCID,Aksu Oktay2ORCID

Affiliation:

1. Department of Geomatics Engineering, Mersin University, Yenişehir, Mersin 33110, Türkiye

2. Geomatics Engineering Department, Istanbul Okan University, Tuzla, Istanbul 34959, Türkiye

Abstract

Wildfire susceptibility maps play a crucial role in preemptively identifying regions at risk of future fires and informing decisions related to wildfire management, thereby aiding in mitigating the risks and potential damage posed by wildfires. This study employs eXplainable Artificial Intelligence (XAI) techniques, particularly SHapley Additive exPlanations (SHAP), to map wildfire susceptibility in Izmir Province, Türkiye. Incorporating fifteen conditioning factors spanning topography, climate, anthropogenic influences, and vegetation characteristics, machine learning (ML) models (Random Forest, XGBoost, LightGBM) were used to predict wildfire-prone areas using freely available active fire pixel data (MODIS Active Fire Collection 6 MCD14ML product). The evaluation of the trained ML models showed that the Random Forest (RF) model outperformed XGBoost and LightGBM, achieving the highest test accuracy (95.6%). All of the classifiers demonstrated a strong predictive performance, but RF excelled in sensitivity, specificity, precision, and F-1 score, making it the preferred model for generating a wildfire susceptibility map and conducting a SHAP analysis. Unlike prevailing approaches focusing solely on global feature importance, this study fills a critical gap by employing a SHAP summary and dependence plots to comprehensively assess each factor’s contribution, enhancing the explainability and reliability of the results. The analysis reveals clear associations between factors such as wind speed, temperature, NDVI, slope, and distance to villages with increased fire susceptibility, while rainfall and distance to streams exhibit nuanced effects. The spatial distribution of the wildfire susceptibility classes highlights critical areas, particularly in flat and coastal regions near settlements and agricultural lands, emphasizing the need for enhanced awareness and preventive measures. These insights inform targeted fire management strategies, highlighting the importance of tailored interventions like firebreaks and vegetation management. However, challenges remain, including ensuring the selected factors’ adequacy across diverse regions, addressing potential biases from resampling spatially varied data, and refining the model for broader applicability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3