Seasonal Variation in Total Cloud Cover and Cloud Type Characteristics in Xinjiang, China Based on FY-4A

Author:

Zeng Yong1234ORCID,Yang Lianmei1234ORCID,Tong Zepeng1234,Jiang Yufei1234,Zhou Yushu56ORCID,Lu Xinyu1234ORCID,Abulikemu Abuduwaili7ORCID,Li Jiangang1234

Affiliation:

1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

2. Xinjiang Innovation Institute of Cloud Water Resource Development and Utilization, Urumqi 830002, China

3. Xinjiang Cloud Precipitation Physics and Cloud Water Resources Development Laboratory, Urumqi 830002, China

4. Field Scientific Observation Base of Cloud Precipitation Physics in West Tianshan Mountains, Xinyuan 844900, China

5. Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

6. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

7. Xinjiang Key Laboratory of Oasis Ecology, College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

Abstract

In order to deepen the knowledge of the seasonal variation in total cloud cover (TCC) in Xinjiang, China (XJ), a typical arid region, and to broaden the understanding of the seasonal variation in cloud type (CLT) in the region, we used TCC and CLT datasets from the latest generation of the geostationary satellite Fengyun 4A (FY-4A) from 2018 to 2022 to investigate the seasonal variation characteristics of TCC and CLT in XJ. Meanwhile, to verify the accuracy of TCC from FY-4A, ground observation (GROB) TCC datasets from 105 national meteorological stations (NMSs) in XJ and TCC datasets from ERA5 during the same period were used. In addition, the correlation between TCC from FY-4A and meteorological factors from ERA5 was also analyzed in this study. The TCC from FY-4A, GROB, and ERA5 can all well reflect the significant seasonal variation in TCC in XJ, with the highest (lowest) mean TCC and a distribution pattern of high in the southwest (northwest) and low in the northeast (southeast) in spring (fall) in XJ. Although the mean TCC from FY-4A in all four seasons was lower than that from GROB, the two were comparable in spring (44.09% and 47.32%) and summer (42.88% and 43.17%), while there was a significant difference between the two in fall (27.86% and 40.19%) and winter (30.58% and 46.93%) for 105 NMSs in XJ. The TCC from FY-4A was lower (higher) than that from GROB in spring and summer at most NMSs in northern (southern) XJ, while the TCC from FY-4A was lower than that from GROB for the vast majority of NMSs in fall and winter, especially in northern XJ. The seasonal variation in the spatial distribution of different CLTs (clear, water-type, supercooled-type, mixed-type, ice-type, cirrus-type, and overlap-type) from FY-4A exhibited diverse variation characteristics. Water-type (supercooled-water-type) had a high-frequency center of over 30% in the Tarim Basin (Kunlun Mountains) during summer. Mixed-type (ice-type and cirrus-type) had the highest frequency in winter (spring), while overlap-type had the highest frequency in summer. The correlation between TCC and water vapor conditions (total column vertically integrated water vapor, specific humidity at 250 hPa, 500 hPa, and 700 hPa) was positive in XJ.

Funder

Tianshan Mountains Talent Project

National Natural Science Foundation of China

Key Research and Development Program of Xinjiang Uygur Autonomous Region

Natural Science Foundation of Xinjiang Uygur Autonomous Region

S&T Development Fund of IDM

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3