SSANet-BS: Spectral–Spatial Cross-Dimensional Attention Network for Hyperspectral Band Selection

Author:

Cui Chuanyu1ORCID,Sun Xudong2ORCID,Fu Baijia1,Shang Xiaodi1ORCID

Affiliation:

1. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

2. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

Abstract

Band selection (BS) aims to reduce redundancy in hyperspectral imagery (HSI). Existing BS approaches typically model HSI only in a single dimension, either spectral or spatial, without exploring the interactions between different dimensions. To this end, we propose an unsupervised BS method based on a spectral–spatial cross-dimensional attention network, named SSANet-BS. This network is comprised of three stages: a band attention module (BAM) that employs an attention mechanism to adaptively identify and select highly significant bands; two parallel spectral–spatial attention modules (SSAMs), which fuse complex spectral–spatial structural information across dimensions in HSI; a multi-scale reconstruction network that learns spectral–spatial nonlinear dependencies in the SSAM-fusion image at various scales and guides the BAM weights to automatically converge to the target bands via backpropagation. The three-stage structure of SSANet-BS enables the BAM weights to fully represent the saliency of the bands, thereby valuable bands are obtained automatically. Experimental results on four real hyperspectral datasets demonstrate the effectiveness of SSANet-BS.

Funder

Qingdao Natural Science Foundation

China Postdoctoral Science Foundation

Postdoctoral Applied Research Foundation of Qingdao

National Natural Science Foundation of China

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3