Forest Type and Climate Outweigh Soil Bank in Shaping Dynamic Changes in Macrofungal Diversity in the Ancient Tree Park of Northeast China

Author:

Zhu Zhaoxiang1ORCID,Liu Xin1,Hsiang Tom2ORCID,Ji Ruiqing1ORCID,Liu Shuyan1

Affiliation:

1. Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China

2. Department of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

The community structure of macrofungi is influenced by multiple complex factors, including climate, soil, vegetation, and human activities, making it challenging to discern their individual contributions. To investigate the dynamic changes in macrofungal diversity in an Ancient Tree Park located in Northeast China and explore the factors influencing this change, we collected 1007 macrofungi specimens from different habitats within the park and identified 210 distinct fungal species using morphological characteristics and ITS sequencing. The species were classified into 2 phyla, 6 classes, 18 orders, 55 families, and 94 genera. We found macrofungal compositions among different forest types, with the mixed forest displaying the highest richness and diversity. Climatic factors, particularly rainfall and temperature, positively influenced macrofungal species richness and abundance. Additionally, by analyzing the soil fungal community structure and comparing aboveground macrofungi with soil fungi in this small-scale survey, we found that the soil fungal bank is not the main factor leading to changes in the macrofungal community structure, as compared to the influence of climate factors and forest types. Our findings provide valuable insights into the dynamic nature of macrofungal diversity in the Ancient Tree Park, highlighting the influence of climate and forest type.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3