Trehalase Inhibitor Validamycin May Have Additional Mechanisms of Toxicology against Rhizoctonia cerealis

Author:

Yang Xiaoyue12,Shu Yan1,Cao Shulin1,Sun Haiyan1,Zhang Xin1,Zhang Aixiang1,Li Yan2ORCID,Ma Dongfang2,Chen Huaigu13,Li Wei13ORCID

Affiliation:

1. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

2. Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China

3. Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

Sharp eyespot is a crucial disease affecting cereal plants, such as bread wheat (Triticum aestivum) and barley (Hordeum vulgare), and is primarily caused by the pathogenic fungus Rhizoctonia cerealis. As disease severity has increased, it has become imperative to find an effective and reasonable control strategy. One such strategy is the use of the trehalose analog, validamycin, which has been shown to have a potent inhibitory effect on several trehalases found in both insects and fungi, and is widely used as a fungicide in agriculture. In this study, we demonstrated that 0.5 μg/mL validamycin on PDA plates had an inhibitory effect on R. cerealis strain R0301, but had no significant impact on Fusarium graminearum strain PH-1. Except for its inhibiting the trehalase activity of pathogenic fungi, little is known about its mechanism of action. Six trehalase genes were identified in the genome of R. cerealis, including one neutral trehalase and five acidic trehalase genes. Enzyme activity assays indicated that treatment with 5 μg/mL validamycin significantly reduces trehalase activity, providing evidence that validamycin treatment does indeed affect trehalase, even though the expression levels of most trehalase genes, except Rc17406, were not obviously affected. Transcriptome analysis revealed that treatment with validamycin downregulated genes involved in metabolic processes, ribosome biogenesis, and pathogenicity in the R. cerealis. KEGG pathway analysis further showed that validamycin affected genes related to the MAPK signaling pathway, with a significant decrease in ribosome synthesis and assembly. In conclusion, our results indicated that validamycin not only inhibits trehalose activity, but also affects the ribosome synthesis and MAPK pathways of R. cerealis, leading to the suppression of fungal growth and pesticidal effects. This study provides novel insights into the mechanism of action of validamycin.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3