Author:
Karamian ,Mowla ,Esmaeilzadeh
Abstract
Application of nanoparticles in aqueous base-fluids for intensification of absorption rate is an efficient method for absorption progress within the system incorporating bubble-liquid process. In this research, SO2 and CO2 were separately injected as single raising bubbles containing nanofluids to study the impact of nanoparticle effects on acidic gases absorption. In order to do this, comprehensive experimental studies were done. These works also tried to investigate the effect of different nanofluids such as water/Al2O3 or water/Fe2O3 or water/SiO2 on the absorption rate. The results showed that the absorption of CO2 and SO2 in nanofluids significantly increases up to 77 percent in comparison with base fluid. It was also observed that the type of gas molecules and nanoparticles determine the mechanism of mass transfer enhancement by nanofluids. Additionally, our findings indicated that the values of mass transfer coefficient of SO2 in water/Al2O3, water/Fe2O3 and water/SiO2 nanofluids are, respectively, 50%, 42% and 71% more than those of SO2 in pure water (kLSO2-water=1.45×10-4 m/s). Moreover, the values for CO2 in above nanofluids were, respectively, 117%, 103% and 88% more than those of CO2 in water alone (kLCO2-water=1.03×10-4 m/s). Finally, this study tries to offer a new comprehensive correlation for mass transfer coefficient and absorption rate prediction.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献