Analysis of Dynamic Characteristics of a 600 kW Storage Type Wind Turbine with Hybrid Hydraulic Transmission

Author:

Liu Zengguang,Tao Yanhua,Wei Liejiang,Zhan Peng,Yue Daling

Abstract

In order to improve the efficiency and convenience of wind energy storage and solve the reproducibility of the hydraulic wind turbine, we present a storage type wind turbine with an innovative hybrid hydraulic transmission, which was adopted in the development of a 600 kW storage type wind turbine experimental platform. The whole hydraulic system of the storage type wind turbine is mainly an ingenious combination of a closed loop transmission and an open loop one, which can also be divided into three parts: hydraulic variable speed, hydraulic energy storage, power generation. For the study focusing on the capture and storage of wind energy, the mathematical model of the wind turbine except for the power generation was established under MATLAB/Simulink. A double closed loop control strategy is proposed to achieve the wind wheel speed regulation and wind energy storage. The dynamic simulations of the 600 kW storage type wind turbine experimental prototype were carried out under two different input signals. The results show that the wind wheel speed achieves the desired value at fast response and high precision using the control method given in this paper, and the proposed new storage type wind turbine is reasonable and practical.

Funder

the National Natural Science Fund Project of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application and analysis of hydraulic wind power generation technology;Energy Strategy Reviews;2023-07

2. Wind turbine electrohydraulic transmission system control for maximum power tracking with pump fault;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-02-21

3. Linear Parameter-Varying Model Predictive Control for Hydraulic Wind Turbine;Actuators;2022-10-12

4. A review of energy storage technologies in hydraulic wind turbines;Energy Conversion and Management;2022-07

5. Wind Energy Potential in Urban Area: Case study Prishtina;International Journal of Technology;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3