An Ensemble-Based Machine Learning Model for Estimation of Subsurface Thermal Structure in the South China Sea

Author:

Qi Jifeng,Liu Chuanyu,Chi Jianwei,Li Delei,Gao LeORCID,Yin Baoshu

Abstract

Reconstructing the vertical structures of the ocean from sea surface information is of great importance for ocean and climate studies. In this study, an ensemble machine learning (Ens-ML) model is proposed to retrieve ocean subsurface thermal structure (OSTS) by using satellite-derived sea surface data and Argo data in the South China Sea (SCS). The input data include sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS), sea surface wind (SSW), and geographic information (including longitude and latitude). We select three stable machine learning models, namely, extreme gradient boosting (XGBoost), RandomForest and light gradient boosting machine (LightGBM) as our benchmark models, and then use an artificial neural network (ANN) technique to combine outputs from the three individual models. The proposed Ens-ML model using sea surface data only by SSH, SST, SSS, and SSW performs less satisfactorily than that considering the contribution of geographical information, indicating that the geographical information is essential to estimate the OSTS accurately. The estimated OSTS from the Ens-ML model are compared with Argo data. The results show that the proposed Ens-ML model can accurately estimate the OSTS (upper 1000 m) in the SCS, which is relatively more accurate and precise than the individual models. The performance of the Ens-ML model also varies with season, and better estimation is obtained in winter, which is probably due to stronger mixing and weaker stratification. This study shows the great potential and advantage of the multi-model ensemble of machine learning algorithm for the ocean’s interior information retrieving, showing great potential in expanding the scope of ocean observations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3