Rice Mapping in a Subtropical Hilly Region Based on Sentinel-1 Time Series Feature Analysis and the Dual Branch BiLSTM Model

Author:

Sun Chunling,Zhang HongORCID,Ge Ji,Wang ChaoORCID,Li Liutong,Xu LuORCID

Abstract

Timely and accurate information on rice cultivation makes important contributions to the profound reform of the global food and agricultural system, and promotes the development of global sustainable agriculture. With all-day and all-weather observing ability, synthetic aperture radar (SAR) can monitor the distribution of rice in tropical and subtropical areas. To solve the problem of misclassification of rice with no marked signal during the flooding period in subtropical hilly areas, this paper proposes a new feature combination and dual branch bi-directional long short-term memory (DB-BiLSTM) model to achieve high-precision rice mapping using Sentinel-1 time series data. Based on field investigation data, the backscatter time series curves of the rice area were analyzed, and a characteristic index (VV − VH)/(VV + VH) (VV: vertical emission and vertical receipt of polarization, VH: vertical emission and horizontal receipt of polarization) for small areas of hilly land was proposed to effectively distinguish rice and non-rice crops with no marked flooding period. The DB-BiLSTM model was designed, ensuring the independent learning of multiple features and effectively combining the time series information of both (VV − VH)/(VV + VH) and VH features. The city of Shanwei, Guangdong Province, China, was selected as the study area. Experimental results showed that the overall accuracy of the rice mapping results was 97.29%, and the kappa coefficient reached 0.9424. Compared to other methods, the rice mapping results obtained by the proposed method maintained good integrity and had less misclassification, which demonstrated the proposed method’s practical value in accurate and effective rice mapping tasks.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Transforming Our World: The 2030 Agenda for Sustainable Development https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981

2. Remote sensing of rice crop areas

3. Statistical Database of the Food and Agricultural Organization of the United Nations,2010

4. Three-way decision based on third-generation prospect theory with Z-numbers

5. Crop type classification using a combination of optical and radar remote sensing data: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3