Abstract
Global climate change has significantly affected terrestrial carbon sinks. Net ecosystem production (NEP) plays a critical role in the global carbon cycle. However, interannual variability (IAV) of the NEP and its regional contributions and climate attributions are not well-understood on a global scale. This study used a diagnostic model driven by remote sensing leaf area index (LAI) to investigate the NEP IAV and analyze regional and climate contributions on a global scale from 1982 to 2016. We found large NEP IAV during the study period, with the NEP detrended anomaly ranging from −2.3 Pg C in 1998 to 1.6 Pg C in 2013 at a global scale. Furthermore, 63.7% and 34.1% of the areas showed positive and negative contributions to NEP IAVs globally, respectively. Evergreen broadleaf forest (EBF) contributed the most (31.1%) to NEP IAV, followed by cropland (21.7%) and grassland (20.8%). Temperature played the most critical roles in the global NEP IAV, with a contribution of 45.5%. However, the partial correlation between NEP and temperature was negative, and the correlation with precipitation was positive in most areas of the globe, indicating that global warming is not conducive to the global carbon sink, but abundant rainfall is important for the global carbon cycle. This study suggests that, to increase the global carbon sink, we should pay more attention to tropical forests (EBFs) and highlight the importance of water availability.
Funder
“5511” Collaborative Innovation Project
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献