The Application of Portable X-ray Fluorescence (pXRF) for Elemental Analysis of Sediment Samples in the Laboratory and Its Influencing Factors

Author:

Zhou Shuguang1234ORCID,Wang Jinlin1ORCID,Bai Yong1ORCID,Wang Wei1,Wang Shanshan1

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. Xinjiang Key Laboratory of Mineral Resources and Digital Geology, Urumqi 830011, China

3. Xinjiang Research Centre for Mineral Resources, Chinese Academy of Sciences, Urumqi 830011, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Several techniques, such as chemical methods and inductively coupled plasma mass spectrometry (ICP-MS), are available to accurately determine element content. However, they are time-consuming, labor-intensive, or expensive. Portable X-ray fluorescence spectrometry (pXRF) can be applied in various scenarios, with significantly higher efficiency and cost-effectiveness than laboratory methods. However, it also has limitations such as lower detection capability, relatively high detection limits, and lower accuracy than laboratory methods. In this study, we focused on applying pXRF to determine the elemental content of sediment samples and investigate its use in mineral exploration. A variety of factors influencing the results of pXRF analysis were analyzed. Our results showed that pXRF could detect more than 30 elements in stream sediments. The reliability of pXRF’s measurements was affected by factors such as the kind of element, sediment particle size, sample grinding treatment, count time, averaged element content, standard deviation of content, and range of content variation. The combination of pXRF analysis and laboratory analysis of partial samples is adequate for establishing a multi-element content inference equation. With this equation, it is possible to effectively infer the content gradient of elements, which will provide valuable support for mineral resource exploration.

Funder

Third Xinjiang Scientific Expedition Program

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Science and Technology Major Project of Xinjiang Uygur Autonomous Region, China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3