Author:
Huang Sheng,Wang Jianhua,Sun Heng,Fu Yuna,Wang Yan
Abstract
Mechanobiology studies the means by which physical forces and mechanical properties change intra- or inter- biological macromolecules. Calmodulin (CaM) is involved in physiological activities and various metabolic processes in eukaryotic cells. Although the configuration changes in the interaction between calmodulin and melittin have been studied, the biomechanical relationship of their interaction has rarely been explored. Here, we measured the adhesion forces between calmodulin and melittin in solutions of gradient concentration of calcium ions using atomic force microscopy (AFM). We found that the specific (Fi) and nonspecific (F0) adhesion forces between single melittin and calmodulin in a PBS solution were 69.4 ± 5.0 and 29.3 ± 8.9 pN, respectively. In the presence of 10−7 to 10−3 M Ca2+ PBS solution, the Fi increased significantly to 93.8 ± 5.0, 139.9 ± 9.0, 140.4 ± 9.7, 171.5 ± 9.0, and 213.3 ± 17.8 pN, indicating that the unbinding force between melittin and calmodulin increased in the presence of Ca2+ in a concentration-dependent manner. These findings demonstrated that biomechanical studies based on AFM could help us better understand the melittin/calmodulin-binding processes in the presence of calcium and help us design and screen peptide drugs based on calmodulin.
Funder
Chongqing Science and Technology Commission
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献