Clog-Free Trilobite Filtration: Tunable Flow Setup and Velocity Measurements

Author:

Mossige Endre Joachim,Jensen Atle

Abstract

The ability to separate and filter out microscopic objects lies at the core of many biomedical applications. However, a persistent problem is clogging, as biomaterials stick to the internal chip surface and limit device efficiency and liability. Here, we review an alternative technique that could solve these clogging issues. By leveraging tunable flow fields and particle inertia around special trilobite-shaped filtration units, we perform filtration of plastic beads by size and we demonstrate sorting of live cells. The separation and filtration are performed completely without signs of clogging. However, a clog-free operation relies on a controlled flow configuration to steer the particles and cells away from the filter structures. In this paper, we describe the tunable flow system for such an operation and we describe an optical setup enabling hydrodynamical interactions between particles and cells with the flow fields and direct interactions with the filter structures to be characterized. The optical setup is capable of measuring particle and flow velocities (by Particle Tracking Velocimetry (PTV), Micro Particle Image Velocimetry (μPIV), and streakline visualization) in meters per second necessary to avoid clogging. However, accurate measurements rely on strict calibration and validation procedures to be followed, and we devote a substantial portion of our paper to laying out such procedures. A comparison between μPIV data and a known flow profile is particularly valuable for assessing measurement accuracy, and this important validation has not been previously published by us. The detail level in our description of the flow configuration and optical system is sufficient to replicate the experiments. In the last part of the paper, we review an assessment of the device performance when handling rigid spheres and live cells. We deconvolute the influences of cell shape from effects of size and find that the shape has only a weak influence on device performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3