Abstract
This paper aims to present a novel airflow-induced acoustic piezoelectric generator that can be used to solve the problem of insufficient power supply of modern intelligent fuzes. The sound waves induced by airflow are the key to power generation performance. It is proposed that an edge tone frequency equal to the acoustic mode frequency is a sufficient condition for evoked acoustic waves, and a design idea and scheme for a universal fuze power supply is provided. We establish the vibration model of the airflow-induced acoustic piezoelectric generator. According to the model, the experimental research on the power generation performance shows that the sound pressure frequency, vibration displacement frequency, and output voltage frequency are consistent. The model provides a design idea for a vibration sensor. At the flow rate of 100.8 m/s, the output power is 45.3 mW, which is much higher than the fuze power sources such as the magnetic backseat generator. Therefore, the airflow-induced piezoelectric generator can effectively solve the problem of the modern fuze less types of power supply and low output energy.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献