Surface Characterization and Tribological Performance Analysis of Electric Discharge Machined Duplex Stainless Steel

Author:

Ablyaz Timur Rizovich,Shlykov Evgeny Sergeevich,Muratov Karim Ravilevich,Mahajan AmitORCID,Singh GurpreetORCID,Devgan Sandeep,Sidhu Sarabjeet SinghORCID

Abstract

The present article focused on the surface characterization of electric discharge machined duplex stainless steel (DSS-2205) alloy with three variants of electrode material (Graphite, Copper-Tungsten and Tungsten electrodes). Experimentation was executed as per Taguchi L18 orthogonal array to inspect the influence of electric discharge machining (EDM) parameters on the material removal rate and surface roughness. The results revealed that the discharge current (contribution: 45.10%), dielectric medium (contribution: 18.24%) majorly affects the material removal rate, whereas electrode material (contribution: 38.72%), pulse-on-time (contribution: 26.11%) were the significant parameters affecting the surface roughness. The machined surface at high spark energy in EDM oil portrayed porosity, oxides formation, and intermetallic compounds. Moreover, a pin-on-disc wear analysis was executed and the machined surface exhibits 70% superior wear resistance compared to the un-machined sample. The surface thus produced also exhibited improved surface wettability responses. The outcomes depict that EDMed DSS alloy can be considered in the different biomedical and industrial applications.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3