Abstract
The sustained release of pesticides improves drug utilization efficiency and reduces their adverse effects. Activated carbon (AC) is an excellent adsorbent and promising soil conditioner. It has a rich, porous structure and thus can store and gradually release drugs. In this study, three AC materials with surface areas ranging from 800–2000 m2/g were used and two types of modified activated carbons were prepared, and their capacity as drug carriers was evaluated by using 2,4-Dichlorophenoxyacetic acid sodium (2,4-D sodium) as the model pesticide. The preparations were characterized by scanning electron microscopy, nitrogen physical analysis, and zeta potential. The five preparations showed an enhanced and tunable sustained release of drugs. AC1, with the highest specific surface area, possesses the best drug-loading capacity, reaching 679.18 mg/g, but the lowest drug release rate of 32.31% in 96 h. PDA-AC3 has the lowest specific surface area, showing limited drug-loading ability, 82.94 mg/g, but 100% drug release within 72 h. This study suggests that activated carbon has potent applications in agricultural pest control as an inexpensive, effective, controllable, and safe pesticide carrier.
Funder
the National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Subject
General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献