Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint

Author:

Tian Qin,Zhuge Hanqing,Xie Xu

Abstract

Based on the continuum damage mechanics model (CDM) for monotonic tension, a new CDM for ultra-low-cycle fatigue (ULCF) is put forward to predict ULCF damage of steel and its weld joint under strong earthquakes. The base metal, heat-affected zone and weld metal of Q345qC steel were considered as research objects, and the uniaxial plastic strain threshold of the CDM model was calibrated via tensile testing combined with finite element analysis of notched round bar specimens. ULCF tests of the base metal and weld specimens were carried out to analyse their fatigue life, fracture life and post-fracture path. Based on the calibrated uniaxial plastic strain threshold, the finite element models of base metal and weld specimens suitable for CDM model were established by ABAQUS. The calibration results of material parameters show that the weld metal has the lowest plastic strain threshold and the largest dispersion coefficient at the plastic strain threshold. Prediction results under cyclic loading with a large strain were compared with experimental values, and results showed that the predicted crack initiation and fracture lives of the base metal and weld specimens are lower than their corresponding experimental values. The predicted errors of crack initiation life and fracture life decrease with increasing strain level. The development law of the damage variable reveals exponential growth combined with a stepped pattern. The CDM model can also accurately predict the number of cycles to initial damage. Taking the results together, the CDM of the ULCF of the base metal and weld specimens could successfully predict post-fracture paths.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3