Abstract
(1) Background: public transport demand dynamics represents important information for fleet managers and is also a key factor in making public transport attractive to reduce the environmental footprint of urban traffic. This research presents some experimental results on the assessment of low-energy communication technologies, such as Wi-Fi and Bluetooth, as support for people density and/or movement tracking sensing technologies. (2) Methods: the research is based on field measurements to determine the percentage of discoverable devices carried by people, in relation to the total number of physical persons in interest, different scenarios of mobile devices usage and evaluation of influences on radio signals’ propagation, RSSI / RX read values, and efficiency of indoor localization, or in similar GPS-denied environments. Different situations are investigated, especially public transport-related ones, such as subway stations, indoors of commuting hubs, railway stations and trains. (3) Results: diagrams and experiments are presented, and models of signal behavior are also proposed. (4) Conclusions: recommendations on the efficiency of these non-conventional traveler and passenger flow tracking solutions and models are presented at the end of the paper.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献