Joint Optimization of Energy Consumption and Data Transmission in Smart Body Area Networks

Author:

Li Limiao,Long Junyao,Zhou Wei,Jolfaei Alireza,Haghighi Mohammad Sayad

Abstract

In Wireless Body Area Networks (BAN), energy consumption, energy harvesting, and data communication are the three most important issues. In this paper, we develop an optimal allocation algorithm (OAA) for sensor devices, which are carried by or implanted in human body, harvest energy from their surroundings, and are powered by batteries. Based on the optimal allocation algorithm that uses a two-timescale Lyapunov optimization approach, we design a framework for joint optimization of network service cost and network utility to study energy, communication, and allocation management at the network edge. Then, we formulate the utility maximization problem of network service cost management based on the framework. Specifically, we use OAA, which does not require prior knowledge of energy harvesting to decompose the problem into three subproblems: battery management, data collection amount control and transmission energy consumption control. We solve these through OAA to achieve three main goals: (1) balancing the cost of energy consumption and the cost of data transmission on the premise of minimizing the service cost of the devices; (2) keeping the balance of energy consumption and energy collection under the condition of stable queue; and (3) maximizing network utility of the device. The simulation results show that the proposed algorithm can actually optimize the network performance.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3