Context Recognition Algorithms for Energy-Efficient Freezing-of-Gait Detection in Parkinson’s Disease

Author:

Borzì Luigi1ORCID,Sigcha Luis2ORCID,Olmo Gabriella1ORCID

Affiliation:

1. Data Analytics and Technologies for Health Lab (ANTHEA), Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy

2. Data-Driven Computer Engineering (D2iCE) Group, Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX Limerick, Ireland

Abstract

Freezing of gait (FoG) is a disabling clinical phenomenon of Parkinson’s disease (PD) characterized by the inability to move the feet forward despite the intention to walk. It is one of the most troublesome symptoms of PD, leading to an increased risk of falls and reduced quality of life. The combination of wearable inertial sensors and machine learning (ML) algorithms represents a feasible solution to monitor FoG in real-world scenarios. However, traditional FoG detection algorithms process all data indiscriminately without considering the context of the activity during which FoG occurs. This study aimed to develop a lightweight, context-aware algorithm that can activate FoG detection systems only under certain circumstances, thus reducing the computational burden. Several approaches were implemented, including ML and deep learning (DL) gait recognition methods, as well as a single-threshold method based on acceleration magnitude. To train and evaluate the context algorithms, data from a single inertial sensor were extracted using three different datasets encompassing a total of eighty-one PD patients. Sensitivity and specificity for gait recognition ranged from 0.95 to 0.96 and 0.80 to 0.93, respectively, with the one-dimensional convolutional neural network providing the best results. The threshold approach performed better than ML- and DL-based methods when evaluating the effect of context awareness on FoG detection performance. Overall, context algorithms allow for discarding more than 55% of non-FoG data and less than 4% of FoG episodes. The results indicate that a context classifier can reduce the computational burden of FoG detection algorithms without significantly affecting the FoG detection rate. Thus, implementation of context awareness can present an energy-efficient solution for long-term FoG monitoring in ambulatory and free-living settings.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3