Saudi Rosmarinus officinalis and Ocimum basilicum L. Polyphenols and Biological Activities

Author:

Elansary Hosam O.ORCID,Szopa AgnieszkaORCID,Kubica Paweł,Ekiert Halina,El-Ansary Diaa O.,Al-Mana Fahed A.,Mahmoud Eman A.

Abstract

Investigating the polyphenolic profile of natural Rosmarinus officinalis and Ocimum basilicum populations may reveal essential compounds that have biological activities. Natural populations of R. officinalis and O. basilicum in Northern Riyadh were investigated by HPLC-DAD analyses. Several polyphenols, including rosmarinic acid, gentisic acid, 3,4-dihydroxyphenylacetic acid, rutoside, and others, out of 38 screened were confirmed. Rosmarinic acid was the major polyphenol in both of R. officinalis and O. basilicum. R. officinalis methanolic leaf extracts contained other phenols such as gentisic acid while O. basilicum contained also 3,4-dihydroxyphenylacetic acid and rutoside as well as others. R. officinalis showed higher antioxidant activities than O. basilicum using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and β-carotene bleaching assays. These higher activities are associated with a higher composition of rosmarinic acid in leaf extracts. The antioxidant activities of O. basilicum were attributed to identified phenols of rosmarinic acid, 3,4-dihydroxyphenylacetic acid, and rutoside. There were antiproliferative and cytotoxic activities of leaf extracts, as well as identified polyphenols, against several cancer cells. These activities were attributed to the accumulation of necrotic and apoptotic cells in treated cancer cells with leaf extracts as well as identified polyphenols. The antibacterial and antifungal activities of leaf extracts were mainly attributed to 3,4-dihydroxyphenylacetic acid and rutoside in O. basilicum and rosmarinic acid and caffeic acid in R. officinalis. This study proved that R. officinalis and O. basilicum natural populations might be considered as promising sources of natural polyphenols with biological activities.

Funder

King Saud University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3