Quantitatively Inferring Three Mechanisms from the Spatiotemporal Patterns

Author:

Zhang KangORCID,Hu Wen-SiORCID,Liu Quan-XingORCID

Abstract

Although the diversity of spatial patterns has gained extensive attention on ecosystems, it is still a challenge to discern the underlying ecological processes and mechanisms. Dynamical system models, such partial differential equations (PDEs), are some of the most widely used frameworks to unravel the spatial pattern formation, and to explore the potential ecological processes and mechanisms. Here, comparing the similarity of patterned dynamics among Allen–Cahn (AC) model, Cahn–Hilliard (CH) model, and Cahn–Hilliard with population demographics (CHPD) model, we show that integrated spatiotemporal behaviors of the structure factors, the density-fluctuation scaling, the Lifshitz–Slyozov (LS) scaling, and the saturation status are useful indicators to infer the underlying ecological processes, even though they display the indistinguishable spatial patterns. First, there is a remarkable peak of structure factors of the CH model and CHPD model, but absent in AC model. Second, both CH and CHPD models reveal a hyperuniform behavior with scaling of −2.90 and −2.60, respectively, but AC model displays a random distribution with scaling of −1.91. Third, both AC and CH display uniform LS behaviors with slightly different scaling of 0.37 and 0.32, respectively, but CHPD model has scaling of 0.19 at short-time scales and saturation at long-time scales. In sum, we provide insights into the dynamical indicators/behaviors of spatial patterns, obtained from pure spatial data and spatiotemporal related data, and a potential application to infer ecological processes.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3