The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families

Author:

González Yero IsmaelORCID

Abstract

We consider in this work a new approach to study the simultaneous strong metric dimension of graphs families, while introducing the simultaneous version of the strong resolving graph. In concordance, we consider here connected graphs G whose vertex sets are represented as V ( G ) , and the following terminology. Two vertices u , v ∈ V ( G ) are strongly resolved by a vertex w ∈ V ( G ) , if there is a shortest w − v path containing u or a shortest w − u containing v. A set A of vertices of the graph G is said to be a strong metric generator for G if every two vertices of G are strongly resolved by some vertex of A. The smallest possible cardinality of any strong metric generator (SSMG) for the graph G is taken as the strong metric dimension of the graph G. Given a family F of graphs defined over a common vertex set V, a set S ⊂ V is an SSMG for F , if such set S is a strong metric generator for every graph G ∈ F . The simultaneous strong metric dimension of F is the minimum cardinality of any strong metric generator for F , and is denoted by Sd s ( F ) . The notion of simultaneous strong resolving graph of a graph family F is introduced in this work, and its usefulness in the study of Sd s ( F ) is described. That is, it is proved that computing Sd s ( F ) is equivalent to computing the vertex cover number of the simultaneous strong resolving graph of F . Several consequences (computational and combinatorial) of such relationship are then deduced. Among them, we remark for instance that we have proved the NP-hardness of computing the simultaneous strong metric dimension of families of paths, which is an improvement (with respect to the increasing difficulty of the problem) on the results known from the literature.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. Distance in Graphs;Goddard,2011

2. Theory and Applications of Distance Geometry;Blumenthal,1953

3. Leaves of trees;Slater;Congr. Numer.,1975

4. On the metric dimension of a graph;Harary;ARS Comb.,1976

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3