Strength Development and Environmental Assessment of Full Tailings Filling Materials with Various Water-to-Binder Ratios

Author:

Ding ZhuORCID,Liu Pai,Cui Peng,Hong ChengyuORCID

Abstract

In order to build green mines, goaf is often filled, supported, and sealed with a high-water material to eliminate a series of environmental problems and safety hazards caused by goaf. In this study, ordinary Portland cement, sulphoaluminate cement, and alkali-activated cement were used as binders to prepare full-tailings high-water materials for filling, with various water-to-cement ratios. The compressive strength development of consolidated tungsten tailings specimens prepared with various curing binders was observed, and the influence of various water–cement ratios on the strength development was analyzed. The environmental impact of mine backfill materials was assessed according to the life cycle theory (LCA), and these mine backfill materials were prepared by using various binders. The results show that when the water-to-binder ratio is 3, the strength of alkali-activated cement can reach 3 MPa at 28 days; at that ratio, the microstructure of alkali-activated cement is more compact. Through LCA analysis, the environmental load of alkali-activated cement is shown to be significantly lower than that of either Portland cement or sulphoaluminate cement; the LCA results show that the primary energy consumption using alkali-activated cement is reduced from the Portland and sulphoaluminate cements by 1319.32 MJ and 945 kg, respectively. These unusual reduction percentages are achieved because the production of alkali-activated cement by LCA does not have any negative environmental impact—the production of alkali-activated cement, with its primary component being industrial byproduct slag, so that the use of alkali-activated cement in tailings’ consolidation has a positive environmental impact.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3