Study on Construction Molding Technology of Long-Span Space Truss Suspended Dome Structure

Author:

Liu Mingliang,Zhao JunhaiORCID,Jiao Yongkang,Hui CunORCID,Zhou Chunjuan,Yang Xiao,Zhang Yupeng

Abstract

Typically, the upper part of the roof a gymnasium building is a radial inverted triangular truss structure, and the lower part is a cable structure. They are connected by vertical braces to form a self-balancing structural system. The whole roof is supported by a complex, spatial, prestressed structure comprising tilted Y-shaped laced columns. Such structures rely on the integrity of the form and the application of prestress to achieve the best performance; it is in an extremely unstable state during construction. In order to study the mechanical behavior of the structure in this process, finite element software was used to analyze the cumulative slip of the structure and the construction process of cable tension, and the simulation values were compared to the actual monitoring values. The stress and deformation of the structure in different construction stages were investigated, and a reasonable structural unloading scheme was put forward. The study results showed that the stiffness of the long-span space truss suspended dome structure gradually increased with the structural integrity during construction, and the vertical deformation decreased from 25.4 mm to 19.26 mm with the construction process. The location and magnitude of the structure’s maximum internal force and maximum stress varied greatly compared to the static analysis when considering the construction process effects. Hence, conducting a construction process analysis is necessary. The construction technology of symmetrical rotating cumulative slip proposed in this paper has the advantages of a short construction duration, safe and stable construction process, etc., providing technical references for similar engineering constructions.

Funder

the Science and Technology Program of the Ministry of Housing and Urban-Rural De-velopment

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference31 articles.

1. Suspen-Dome System: A Fascinating Space Structure;Olofin;Open Civ. Eng. J.,2017

2. Noshnagh, A.R. (2012). University of Surrey.

3. Analysis and design of the general and outmost-ring stiffened suspen-dome structures;Kang;Engineering Struct.,2003

4. Long-span Steel Structure System and Application Case Summary;Lin;Highlights Sci. Eng. Technol.,2022

5. The research of suspen-dome structure;Gong;IOP Conf. Series Mater. Sci. Eng.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3