Multi-Objective Optimization of Performance Indicators in Turning of AISI 1045 under Dry Cutting Conditions

Author:

Abbas Adel T.ORCID,Al-Abduljabbar Abdulhamid A.ORCID,El Rayes Magdy M.ORCID,Benyahia FaycalORCID,Abdelgaliel Islam H.ORCID,Elkaseer AhmedORCID

Abstract

In machining operations, minimizing the usage of resources such as energy, tools, costs, and production time, while maximizing process outputs such as surface quality and productivity, has a significant impact on the environment, process sustainability, and profit. In this context, this paper reports on the utilization of advanced multi-objective algorithms for the optimization of turning-process parameters, mainly cutting speed, feed rate, and depth of cut, in the dry machining of AISI 1045 steel for high-efficient process. Firstly, a number of experimental tests were conducted in which cutting forces and cutting temperatures are measured. Then the material removal rate and the obtainable surface roughness were determined for the examined range of cutting parameters. Next, regression models were developed to formulate the relationships between the process parameters and the four process responses. After that, four different multi-objective optimization algorithms, (1) Gray Wolf Optimizer (GWO) and (2) Weighted Value Gray Wolf Optimizer (WVGWO), (3) Multi-Objective Genetic Algorithm (MOGA), and (4) Multi-Objective Pareto Search Algorithm (MOPSA), were applied. The results reveal that the optimal running conditions of the turning process of AISI 1045 steel obtained by WVGWO are a feed rate of 0.050 mm/rev, cutting speed of 156.5 m/min, and depth of cut of 0.57 mm. These conditions produce a high level of material removal rate of 4460.25 mm3/min, in addition to satisfying the surface quality with a roughness average of 0.719 µm. The optimal running conditions were found to be dependent on the objective outcomes’ order. Moreover, a comparative evaluation of the obtainable dimensional accuracy in both dry and wet turning operations was carried out, revealing a minimal relative error of 0.053% maximum between the two turning conditions. The results of this research work assist in obtaining precise, optimal, and cost-effective machining solutions, which can deliver a high-throughput, controllable, and robust manufacturing process when turning AISI 1045 steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multicriteria Optimisation of Machining Operations Using a Spreadsheet Model;Tehnički glasnik;2024-07-15

2. Analysis of dry cutting technology based on green manufacturing;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

3. Performance analysis and optimization of machining parameters using coated tungsten carbide cutting tool developed by novel S3P coating method;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-05-10

4. Assessment of performance parameters in intermittent turning and multi-response optimization of machining conditions using DF, MOORA, VIKOR, and coupled NSGAII-VIKOR methods;The International Journal of Advanced Manufacturing Technology;2024-01-25

5. Comparative Analysis of Time Series Forecasting Methods in Workforce Planning using Predictive Analytics;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3