Finite Element Analysis of Large Plastic Deformation Process of Pure Molybdenum Plate during Hot Rolling

Author:

Han Jiayu,Cheng Quan,Hu Ping,Xing HairuiORCID,Li Shilei,Ge Songwei,Hua Xingjiang,Hu Boliang,Zhang Wen,Wang Kuaishe

Abstract

The rare molybdenum resources are being increasingly used in heavy industries. In this study, the common unidirectional and cross hot rolling operations, for pure molybdenum plates, were numerically simulated by using MSC. Marc software. An elastic–plastic finite element model was employed, together with the updated Lagrange method, to predict stress and strain fields in the workpiece. The results showed that there was a typical three-dimensional additional compressive stress (σy> σz > σx) in the deformation zone, while strain could be divided into uniaxial compressive strain and biaxial tensile strain (εy > εx > εz). Tensile stress σx increased with the accumulation of reduction and the decrease in friction coefficient at the edge of the width spread. More importantly, the interlaced deformation caused by cross-commutations, which were helpful in repairing the severe anisotropy created by unidirectional hot rolling. The evolution of the temperature field of pure molybdenum plate was investigated. The surface quenching depth of the pure molybdenum plate was about 1/6 H under different initial temperatures and reductions. In addition, the fundamental reason for the nonuniform distribution of stress and strain fields was the joint influence of rolling stress, contact friction, and external resistance. By comparing the theoretical simulation value of the model with the experimental verification data, we found that the model was aligning well with the actual engineering.

Funder

Scientific and Technological Innovation Team Project of the Shaanxi Innovation Capability Support Plan, China

Fok Ying Tung Education Foundation

Youth Innovation Team of Shaanxi Universities

Top Young Talents Project of “Special support program for high-level talents” in Shaanxi province

service local special program of education department of Shaanxi province, China

General Special Scientific Research Program of the Shaanxi Provincial Department of Education

General Projects of Key R&D Program of Shaanxi Province, China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3